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Abstract

For the linear deterministic system with unknown orders and coefficients adaptive controls
are given so that the closed-loop system is stabilized and the unknown parameters are consistently
estimated. Moreover, if the parameter estimation is ignored, then the system input and output

5 can be reduced to zero with an exponential rate.

1. Introduction

Let the SISO system be described by

A(2)yn = B(2)un, {1.1)

where u,,, y, are the system input and output respectively, z is the shift-back operator and
A(z) and B(z) are coprime polynomials:

Alz) =14ai1z+ - +ap2™, ay #0, po 20, (1.2)
Ble) =lszt =+ bua®, - by, #6 g1 -~ (1.3)

The system coefficients
B=[-a; - —ap, by b (1.4)

and the system orders (po, go) are unknown. It is assumed that a set containing the true
orders (po, go) is known, i.e. p* > 1 and ¢* > 1 are given so that

A * *
(Po, 90) € M = {(p,q): 0<p<p*, 1<g<q}.

The problem discussed in this paper is that based on the observed data one wants to
design adaptive control, that leads the output and input of the closed-loop system tending to
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zero, and simultaneously wants to consistently estimate the unknown orders and coefficients.
This problem has been the research topic of a series papers!!~®l which can be classified into
two groups: one devotes effort to controlling the system only, while the other one cares
for both the control performance and consistency of the parameter estimation. Among
the above-mentioned papers, [2,4,5,6] belong to the first group, and [1,3] to the second
group. We note that all these papers need some extra conditions in addition to the standard
coprimeness assumption. For example, in [1] it is assumed that po is known and 27! B(z2) is
stable; in (2] max(po, o) is known; in [4, 5] it is required that the true 6 and the parameters
in controller are located in a known region.

In this paper imposing no additional condition on A(z) and B(z) except coprimeness,
we propose an adaptive regulator which controls the system output and input asymptotically
approaching to zero and makes the estimates for coefficient and orders strongly consistent.
The convergence rate of the coefficient estimate is also indicated. If the parameter estimation
is ignored, then the system can be adaptively stabilized with an exponential rate.

It is worth noting that therL is the essential difference for adaptive stabilization between
two cases: 1) both py and gy are unknown, and  2) either po or go is known. In the case
2), say, when po is known, we may take u, = v,, Vn > 0, where {v,} is a sequence of
mutually independent random variables with

i o? ik
2 2
Bonsap BSg ‘E("’ 5)- z.28 (1.5)

Similiar to the proof of Theorem 3 in [7] it can be shown

n
A
p Y. Zqo,-(p} =¢ >0 a8,
=0

lim inf
n—oo nl—¢

where and hereafter Ayin (X ) denotes the minimum eigenvalue of a matrix X,

©n = Un """ Yn—pot1 Un - ”n—q'+1]' .(1'6)
This means that for any fixed w there is ny < oo such that

n—1

det Z pip; | >0, VYn2no. {1.7)

j=pot+gq*

Therefore, the least squares estimate

1
n—1 n—1 i
E: 8
Bn == Z PJ‘P;- Pj'yj+1 = [0] ’ Vn 2 no (1.8)

J=po+q* i=po+q*

exactly gives the true parameter starting from time no. Thus, one may proceed as follows:
take {v,} as the system input and at each time verify whether or not (1.7) holds. If (1.7)
is true for some n, then one simply obtains the system true parameter and may treat the
problem as a non-adaptive one. The important thing is that this procedure terminates in a
“~ite number of steps.
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However, in the case 1), as will be shown in Lemma, }:;.':p. 44+ 18 degenerate for any n
if p > po and g > go. One cannot say that p = py even though

n
det | > o;(p,9)ei(p.9) | >0,
J=p*+¢*
(1.9)
det | > oilp+Laei(p+1,9) | =
J=p*+q*
for many successive n, because it is not excluded that
n
det | Y wilp+La)ei(p+1,9) | >0
i=p*+q*
for some large n, where
‘p;(psQ) = [yﬂ- C Yn—p+1 Un o un-—-q+1l- (1.10)

So one never knows if he has achieved the true # or not.
This difficulty will be overcome in the sequel by choosing appropriate stopping times.

2. Main Results

Given initial value 65(p, g), let us define the estimate

=
n—1 n—1

bn(p, @) = | Lo+ D 0ilp,9)el(p,q) Y. eilp Q)i (2.1)
j=p*+qg* j=p*+gq*
for the unknown coefficient
0(p, q) =[—a1---—ap by ---b]", VY(p,q) €M, (2.2)

where a; = 0 for © > pg, b; = 0 for § > g by definition and ¢;(p, g) is given by (1.10).
It is well known that gZ.l) can be written in a recursive form.
For order estimation!®! let us take a sequence {u,} of real numbers

pn >0, fin — o0 and n‘ff‘ 0, ec (0, %) (2.3)
and set
n—1
) =D (yi+1 — ©}(p, 9)0a(p, 9))% (2.4)
=0
CIC(p,9)n =0n(p,q) + (P + q)itn- (2.5)

The order estimate (pn, ¢.) is given by minimizing CIC(p, q),:

(Pm Qn) = argmin CIC(p, Q)m Vr2>1, {2'6)
(p.g)EM
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while the coefficient 6(po, go) is estimated by (2.1) with p = p,, ¢ = ¢n:
On(Prs n) = [~G1n - —Gpan  b1n - bgan]’s, Vn 21 (2.7)

We note that if {u,} satisfies (2.3), then {cun} with any constant ¢ > 0 also satisfies
(2.3). It is clear that for finite n, (pn, gn) may vary with c, but as will be shown in Theorem
2 their limit does not depend on c. It is also clear that the constant ¢ reflects the scale of

{yn} and {u,}.
We now define adaptive control. Set

An(2) =14 a1nz + -+ ap,n2, (2.8)
B, (2) = binz+ - + by na™, (2.9)
Tn :max{lyj[: |uJ'|l = n_max(pth*): ~ooyn—1} (2'10}

For simplicity of notation we say that at time n “A” holds if the equation
An(2)Gn(2) — Bu(2)Hn(2) =1 (2.11)

has a unique solution (Gp(z), Hn(z)) with

deg(Gn(z)) < gn— 1, deg(Hn(2)) <pn—1 (2.12)
and
4 (2| + 1| Ba(2)[l + 1Ga(2) | + | Ha(2) | < 27, (2.13)
and if
lyn — epn—1(Pn, qn)ﬂn([’m 2|l < E?r.rm (2.14)

where {€,} is an arbitrarily fixed sequence of real numbers with

1
€n € (0, W) , €n—0, €ip,— oo (2.15)
and by the norm of a polynomial X(z) = }_7_, z;27 we mean || X(z)| = Y70 |75l
Let {v.} be a sequence of positive real numbers, v, — 0.
We say that at time n “B” holds, if

n—1
Z ©;(pn,p" + q*]‘P;(Pn,p’ +q°) | — e I>0, (2.16)
j=p*+q*
n—1
dmin | D @ilPa+1,07)¢5(Pn + 1,47) | < n, (2.17)
j=p*+q*
n—1
Y eilp* + 4,005 + 4% 8n) | — mal >0, (2.18)
i=p*+q* ' ‘
and
n—1
dmin | Y. ©i(p"an + 105 (p" 80 +1) | < e (2.19)

J=p*+¢*
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Define adaptive control u,, as

= { Hy,(2)yn — (Go,(2) — 1)ug,

if n € [0y, ;) for some 1 > 1,

if n € [0,m) or n € [, 0y41) for some 1 > 0,

(2.20)

where 70 = p* + ¢*, {vn} is a sequence of mutually independent random variables with

properties (1.5) and
T0< 01 <Tf <Og < Tp <+ -

are stopping times defined as follows:

o; =min{n: n>7n_; and A and, B hold at time n},

(2.21)

= min{n‘ : n>o0; and |yn - %0:;71(170“90;)96.' (paguqa,)l 2 Eiirn}'

(2.22)

We note that G,(z) is a monic polynomial whenever A holds. Hence, u, can be defined

by (2.20) indeed.

It is easy to see that (2.11) and (2.12) are satisfied if and only if det M,, # 0 where

Mﬂ. = [Mlﬂ. -M2n]

with
Patqn
1 ais im0 0
Mi,=| 9% 1
§
0 0 ) (Bl Ap.n
Prntdn
0 —bin [/ S 0
T 0 0
MZn.: " <
: A “ii; G2 0
o - 0 0 —bin —bann

In the case M,, is nondegenerate, the coefficients

"»b:; = [1 Jin " Gqn—1n hon * h.ﬂn*ln}
of the polynomials
qn—1 pa—1 '
Gn(Z) =1+ Z gJ-an’ and Hn(z) = Z hjan
Jj=1 =0
are given by
'¢’n = M;]'En,

where
e, = El 0-- OIlX{pn+qn)'

(2.23)

Gn;s (2.24)

Pn- (2.25)

(2.26)

(2.27)
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Theorem 1. If A(z) and B(z) are coprime, then the input and output of the adaptive
control system (1.1) and (2.20) exponentially tend to zero:

lyn| + |un| < A", A>0, Ae€(0,1), Vn2>0. (2.28)

This Theorem does not concern the parameter estimation problem which is considered
in Theorem 2.
Let us take € € (O, 2—(;,%‘1—;]-) instead of £ € (0, 1) in (1.5) and (2.3) and disturb the

control defined by (2.20). To be specific, we define

{ vp, ifn€[0,7) or n€ [r,0i41) for some ¢ >0,
. =
" H, (2)yn — (Go,(2) — 1)tn + vn, if n € [0y, 7) for some 7 > 1.

Theorem 2. If A(z) and B(z) are coprime, then the adaptive control (2.29) makes
the system input and output asymptotically tending to zero and the estimates for orders
and coefficients strongly consistent, namely,

1
lyn| + |un] = O (—nelz) ' (2.30)
nlin:c(Pm Qn) == (pO: qO)) (231)
/ 1
16 (Pn V PO, Gn V a0) = 6(Pn V PO, 9n V Qo) = O kW) _ (2.32)
3. Lemmas

We first prove some lemmas. :
Lemma 1. If A(z) and B(z) are coprime and if

lim (Pn, QH) s (PO: qO)s (31)
n—oo
n]ingc tlgn(pn vV po, qn V 90) = 5[pn Vpo, @gnV QO)“ =0, {3-2)

then for sufficiently large n (2.11)—(2.13) are satisfied.

Proof. From coprimeness of A(z) and B(2) it follows that (2.11) and (2.12) hold with
An(2), Bn(2), Hn(2), Gu(2), pn and g, replaced by A(z), B(z), H(z), G(2), po and go
respectively. Then the conclusion of the lemma is derived immediately from consistency of
(Pn, gn) and 0,,(pn,gn) and the expression (2.27). - B

Lemma 2. For p > po+ 1 and ¢ > go + 1 the matrix A, 2 I () [ (M)
is degenerate, Vn > p* + ¢*, le.,

)\min(An) = 0) Vn Z p}t + q*' ; (33)

Proof. By (1.1) it is easy to see that a”p;(p, q) = 0 with

p—po—1 g—qo—1
a"=[lay -~ ap, 000 —by -+ —bg 0--- 0]
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Lemma 3. Let {s,} be génerated by
Sn+2i = Q2{—18p42i—1 + - + xp8p + ﬂnr Vn>0 (34)
with 3771 ;| < 1. If |Ba] = O(n™%), « € (0, 1), then s, = O(n™*), and if B, = 0, then
[8n] < eA”, Vn2>1,¢>0,A€(0,1).
Proof. Set
sl e Snt2i-1 1
1 O sslis wmvr 1 0D
: 0
B= 0 R i = y €=
I a0 ; '
0 1 o 0 1 0 Sn Y 21x1

From (3.4) it is easy to verify that

Zn+l =BZ, + ﬁne = Bn+lzo + Zﬁ{B"‘”"e_

i=0
Noticing that A ,
det(zI = B) = 22‘ -— (12,;...132'_1 — s —ap
and .
2% — g a1l = L — gy
|z|21
2i—1
>Ja¥ (1 = 32 a3 )
g0 |2]21
2i—1
>1= 3 lay] >0,
7=0

we find that all eigenvalues of B are in the open unit disk. Therefore,

|IB*| £ ¢1A™, ¥n>0 forsome A€ (0,1), ¢; >0 (3.6)
and
I82] € | Zns1]l € O(A™*1)+ 0 (Zi‘“}.“—i—‘)%) :
1=1
Since (;_-)—a A7 is uniformly bounded in 7 and n, 1 <1 < n, we have
sn| £ 1Za]l = O(n™%)
in the case |B,| = O(n™*). The second conclusion of the lemma immediately follows from
(3.5) and (3.6). i
Lemma 4.

In both cases of Theorems 1 and 2 there exists ¢« > 0 such that o; < co
and 7; = oco.
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Proof. If 1; < 0o, 0;41 = co for some 1 > 0, then by an argument similar to that used
in the proof of Theorem 3 of 7| we see that

n—1
1 * P * *
= | 2 ileo,p" + )¢5 (po,p" +07) | 2l >0, Vn2no (3.7)
j=p*+q*
and
1 n—1
= | 2 @il +a" )+ %) | 2l >0, Vn2n, (3.8)
J=p*+¢*

where ng is sufficiently large, and ny may depend on sample.
By Theorem 3.2 of [3], (3.7) and (3.8) imply that (pn, g») —* (Po,q0). Therefore,

there exists some n; > ng such that

(Pn,an) = (Po,90), Vn 2 ny. (3.9)

Lemma 2 together with (3.7)—(3.9) means that “8” holds Vn > n;. From (2.1), (3.8),
(3.9) and (2.3) it follows that Vn > n,,

1
Hgn(pﬂ: Qn.) 3 5” =0 (ﬂ.—l_—‘) ) (310)
which yields

|yn — @h—1(Prs n)0n(Pns @n)| = |@h—1 (Pns dn) (6 — On(Pn, an))|
=lr, _1(Po, 30) (6 — 0n(po, 90))| < (po + %)rn”ﬁ’ — 0, (po, 20)||

-0 (5]

This incorporating (3.9), (3.10) and Lemma 1 yields that “A” holds for all sufficiently large
n. Thus, o;4; must be finite.

The obtained contradiction shows that “r; < co, oy41 = co” is impossible.

Now, let 0; <1z <00, Vi2>0.

Since (po,, 90;) € M, there exists a convergent subsequence, which is also denoted by
(Pos» 9o;) for notational simplicity but without loss of generality. Let (p’,¢') be the limit of
the subsequence. Being the integers, (p,,, 4-,) = (p', ¢') for 7 starting from some %,.

By the definition of (2.21) we have

ai—1
> eilept +97) @5 Pt +47) | — e I>0, Vi, (3.11)
I=p*+q*
ci=1
dmin | 9. wile' +1,07) 050" +1,0°) | <0 Vi 2o, (3.12)
j=p*+q*
oi—1
> el +4,d) (" +9%5d) | —pal >0, Vizio (3.13)

j=p*+gq*
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and
7 o;—1
Amin Z ‘Pj(p*rq' + 1) SD;(P*, q' + 1) = Yois Vi > iU' (3'14)
j=p*+aq*

We now show p' = pg.
From (3.12) it is clear that there is a sequence of unit vector ; such that

Infe;(p' +1,¢") £ Aoy Y7 €0,0:). (3.15)

Let {n;,} be a convergent subsequence of {n;}: limg_,oo s, =1, |In| = L.
For any fixed j > p* + ¢* and any 1; > j from (3.15) it follows that

0<n"p;(p' + 1,47)|
<nfees(p' + 1,¢7) +lln — i, [l les (e’ + 1,¢°)| — 0

or
, n"ei(P'+1,¢")=0, Vi>p*+gq". (3.16)
Let
n =ao--ap Po--- Pk (3.17)
We note that o, must differ from 0, because otherwise we would have
s, p" +¢") =0, Vi2p*+g°
with

*

P
. pr— e,
g =[ao - ap-1 fo- Pgecr 0--- 0],
which contradicts (3.11).

Set‘ ’ »
P q —1
" D(z) =) a;z%, E(z)=-)_ B;2. (3.18)
7=0 =0
By (3.16) we have
D(2)yn = E(2)un, Yn2>p*+g*. (3.19)

If p' < po, then there exists a polynomial F(z) of degree y with v < p’ such that
A(z) = M(2)D(2) + F(2), (3.20)

where M (z) is a polynomial of degree po — p'. From (1.1) subtracting M(z)D(z)y,, which
equals M (z)E(z)uy, by (3.19), we derive

F(z)yn = (B(2) — M(2)E(z))un, Yn2p*+q". ' (3.21)
However, from (3.11) it follows that

dmin | D @567 + @) @ +07) | o0, V<4,
Jj=p*+q*
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which means that (3.21) is possible only if F(z) =0 and B(z) = M(z) E(z). This together
with (3.20) implies that A(z) and B(z) have a common factor M(z] which must have zero

degree because A(z) and B(z) are coprime by assumption. Hence p' = po

In a completely similar way, from (3.13) and (3.14) we find that ¢’ = go. Therefore,

(pt’.‘lqdf) = (PO, QO), Vi > 19
and from (2.1) and (2.16) we have
1 ) i
|8, (Po, 90) — 8(po, g0} || = O ) Vi > 1p.
Hence, by (2.15) there exists 1; > i such that

lyn — @} _1(Pos 90)8e; (Po, 90|
S(PO T QO)TnHB(Po»QO) = 90’;’ (p0| QO)”

:(L—)‘(E Ty VRZ 0,
Ko,

which means 7;, = oo, a contradiction to 7; < co for all 1.
Therefore, the only possible case is “o; < co, ; = 00” for some .

4. Proof of Theorems

We are now in a position to prove our theorems.
Proof of Theorem 1.
By Lemma 4 we have 0; < oo, 7; = oo for some 7. Noticing

Ay, (2)Go(2) — Ba’.(z)Hﬂi (z) =1

and by (2.20) we see that for any n > ng = o; + max(p*, ¢%),
Aq.(2)Go, (2)yn — Bo, (2) Ho, (2)yn
_Gﬂi (2)[ Ao, (2)yn — Bo, (2)un] + Bo,(2)|Go, (2)un — Ho, (2)yn]
=G, (2)[ Ao, (2)yn — Bo, (2)tn]
and, similarly,
un = Hy,(2)[ A0, (2)¥n — Bo, (2)un].
Paying attention to (2.13) and (2.22) from (4.2) and (4.3) we see that

g -1
lyn| <[1Ga ()| E |yn-J' b (P:-I'—-f—l(pa'i’qoi)ﬁa‘i (pcmqm-)l
i=0
q* -1 " —1
SE;‘.IE& Tp—g S Z Pred
= 2(? 2(r* +¢) £

and
p*—1

iun|—2(p +q) Z"n i

(3.22)

(3.23)

(3.24)

(4.1)

(4.2)

(4.3)

(4.5)
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Hence, we have

i 2u-1
Tn42p S w le Tn+2u—71, (4.6)
where ¢ = max(p*, ¢*).
Identify s, with r,, for n =ngy, ng+1, -+, ng + 2p — 1 and take
1 2u—1
Bhig = w ; Spt+2u—jzy for n > ng. (4.7)
Then we have s, > r, > 0, Vn > ng, and by Lemma 3, (2.28) follows. 1

Proof of Theorem 2.
By Lemma 4 we have 0; < co, ; = co for some 1.
We note that (2.29) differs from (2.20) by a term vy,,so corresponding to (4.2) and (4.3)

we now have, for any n > ng £ o; + max(p*, ¢*),
n = Go,(2)[A4s, (2)yn — B, (2)un] + By, (2)vn

and
Up = Ha,- (z)iAa; (z)yn - Ba’.' (z)uﬂ-i + Aai(z)vﬂ

In the present case (4.4) and (4.5) change tc

g -1
q U
Iynl <|IGU' (2’)“ Z |y"' 7 (pn == 1(pal’q‘rl)90t(p°’ﬂq0’|)| o ”Bﬂ" H(—)S/E
7=0
g =1

2(p thir)zr"J+ Q)‘/Z

and
pt=1

onl € 37y A =

max( W ‘!a
where ¢ = P od 07

LS
Applying Lemma 3 leads to (2.30).
Let us denote u® = u,, —v,,. Then by (1.5) and (2.23) it is easy to see that X 3" (u?)?
= O(n"‘lz].
By Theorem 3.4 of [3] we have (2.31) and (2.32). ]
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